Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
Mol Cell ; 73(1): 97-106.e4, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472190

RESUMO

Transcription initiation requires opening of promoter DNA in the RNA polymerase II (Pol II) pre-initiation complex (PIC), but it remains unclear how this is achieved. Here we report the cryo-electron microscopic (cryo-EM) structure of a yeast PIC that contains underwound, distorted promoter DNA in the closed Pol II cleft. The DNA duplex axis is offset at the upstream edge of the initially melted DNA region (IMR) where DNA opening begins. Unstable IMRs are found in a subset of yeast promoters that we show can still initiate transcription after depletion of the transcription factor (TF) IIH (TFIIH) translocase Ssl2 (XPB in human) from the nucleus in vivo. PIC-induced DNA distortions may thus prime the IMR for melting and may explain how unstable IMRs that are predicted in promoters of Pol I and Pol III can open spontaneously. These results suggest that DNA distortion in the polymerase cleft is a general mechanism that contributes to promoter opening.


Assuntos
DNA Fúngico/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética
3.
Methods Mol Biol ; 1672: 261-294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043630

RESUMO

The DNA replication process can be heavily perturbed by several different conditions of genotoxic stress, particularly relevant for cancer onset and therapy. The combination of psoralen crosslinking and electron microscopy has proven instrumental to reveal the fine architecture of in vivo DNA replication intermediates and to uncover their remodeling upon specific conditions of genotoxic stress. The replication structures are stabilized in vivo (by psoralen crosslinking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of eukaryotic genomic DNA, and includes an improved method for enrichment of replication intermediates, compared to previously used BND-cellulose columns.


Assuntos
Replicação do DNA , Células Eucarióticas/fisiologia , Microscopia Eletrônica , Animais , Reagentes de Ligações Cruzadas , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Elife ; 62017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623663

RESUMO

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from -27 to -16. Core Factor's intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


Assuntos
DNA Fúngico/ultraestrutura , Proteínas Pol1 do Complexo de Iniciação de Transcrição/ultraestrutura , RNA Polimerase I/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , DNA Fúngico/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ligação Proteica , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Cell Biol ; 210(4): 553-64, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26283798

RESUMO

The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.


Assuntos
Centrômero/fisiologia , Mitose , Saccharomyces cerevisiae/genética , Centrômero/ultraestrutura , Cromatina/fisiologia , Cromatina/ultraestrutura , DNA Fúngico/fisiologia , DNA Fúngico/ultraestrutura , Microtúbulos/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/citologia , Fuso Acromático
6.
Mol Biol Cell ; 26(9): 1575-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25926702

RESUMO

The first centromere was isolated 35 years ago by Louise Clarke and John Carbon from budding yeast. They embarked on their journey with rudimentary molecular tools (by today's standards) and little knowledge of the structure of a chromosome, much less the nature of a centromere. Their discovery opened up a new field, as centromeres have now been isolated from fungi and numerous plants and animals, including mammals. Budding yeast and several other fungi have small centromeres with short, well-defined sequences, known as point centromeres, whereas regional centromeres span several kilobases up to megabases and do not seem to have DNA sequence specificity. Centromeres are at the heart of artificial chromosomes, and we have seen the birth of synthetic centromeres in budding and fission yeast and mammals. The diversity in centromeres throughout phylogeny belie conserved functions that are only beginning to be understood.


Assuntos
Centrômero/genética , Saccharomycetales/genética , Aniversários e Eventos Especiais , Cromossomos Fúngicos/genética , DNA Fúngico/genética , DNA Fúngico/ultraestrutura , Proteínas Fúngicas/fisiologia , Pesquisa em Genética/história , História do Século XX , Pessoal de Laboratório
7.
PLoS Comput Biol ; 11(4): e1004136, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25860149

RESUMO

In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a strategy for its characterization inside human fragile sites.


Assuntos
Mapeamento Cromossômico/métodos , DNA Fúngico/genética , DNA Fúngico/ultraestrutura , Genoma Fúngico/genética , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética , Sequência de Bases , Simulação por Computador , DNA Fúngico/química , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Análise de Sequência de DNA/métodos
8.
DNA Repair (Amst) ; 12(9): 707-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23769192

RESUMO

The role of Dmc1 as a meiosis-specific general recombinase was first demonstrated in Saccharomyces cerevisiae. Progress in understanding the biochemical mechanism of ScDmc1 has been hampered by its tendency to form inactive aggregates. We have found that the inclusion of ATP during protein purification prevents Dmc1 aggregation. ScDmc1 so prepared is capable of forming D-loops and responsive to its accessory factors Rad54 and Rdh54. Negative staining electron microscopy and iterative helical real-space reconstruction revealed that the ScDmc1-ssDNA nucleoprotein filament harbors 6.5 protomers per turn with a pitch of ∼106Å. The ScDmc1 purification procedure and companion molecular analyses should facilitate future studies on this recombinase.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/química , Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Cromatografia em Gel , DNA Helicases/química , Enzimas Reparadoras do DNA/química , DNA Topoisomerases/química , DNA Fúngico/química , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Recombinação Homóloga , Humanos , Hidrólise , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
9.
EMBO J ; 31(10): 2416-26, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22473209

RESUMO

In eukaryotic cells, DNA is organized into arrays of repeated nucleosomes where the shorter nucleosome repeat length (NRL) types are associated with transcriptionally active chromatin. Here, we tested a hypothesis that systematic variations in the NRL influence nucleosome array folding into higher-order structures. For NRLs with fixed rotational settings, we observed a negative correlation between NRL and chromatin folding. Rotational variations within a range of longer NRLs (188 bp and above) typical of repressed chromatin in differentiated cells did not reveal any changes in chromatin folding. In sharp contrast, for the shorter NRL range of 165-177 bp, we observed a strong periodic dependence of chromatin folding upon the changes in linker DNA lengths, with the 172 bp repeat found in highly transcribed yeast chromatin imposing an unfolded state of the chromatin fibre that could be reversed by linker histone. Our results suggest that the NRL may direct chromatin higher-order structure into either a nucleosome position-dependent folding for short NRLs typical of transcribed genes or an architectural factor-dependent folding typical of longer NRLs prevailing in eukaryotic heterochromatin.


Assuntos
Cromatina/metabolismo , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Leveduras/fisiologia , Cromatina/ultraestrutura , DNA Fúngico/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Nucleossomos/ultraestrutura , Leveduras/metabolismo , Leveduras/ultraestrutura
10.
PLoS One ; 7(2): e31845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359636

RESUMO

Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a "protein ruler" (with possibly more than one tick).


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , DNA Fúngico/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica de Transmissão , Ligação Proteica , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Especificidade por Substrato
11.
Mol Cell ; 40(1): 50-62, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932474

RESUMO

Ultraviolet (UV) light induces DNA-damage checkpoints and mutagenesis, which are involved in cancer protection and tumorigenesis, respectively. How cells identify DNA lesions and convert them to checkpoint-activating structures is a major question. We show that during repair of UV lesions in noncycling cells, Exo1-mediated processing of nucleotide excision repair (NER) intermediates competes with repair DNA synthesis. Impediments of the refilling reaction allow Exo1 to generate extended ssDNA gaps, detectable by electron microscopy, which drive Mec1 kinase activation and will be refilled by long-patch repair synthesis, as shown by DNA combing. We provide evidence that this mechanism may be stimulated by closely opposing UV lesions, represents a strategy to redirect problematic repair intermediates to alternative repair pathways, and may also be extended to physically different DNA damages. Our work has significant implications for understanding the coordination between repair of DNA lesions and checkpoint pathways to preserve genome stability.


Assuntos
Ciclo Celular , Cromossomos Fúngicos , Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/enzimologia , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Cromossomos Fúngicos/efeitos da radiação , Cromossomos Fúngicos/ultraestrutura , Reparo do DNA/efeitos da radiação , DNA Fúngico/efeitos da radiação , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Relação Dose-Resposta à Radiação , Ativação Enzimática , Exodesoxirribonucleases/genética , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Raios Ultravioleta
12.
Nat Struct Mol Biol ; 17(2): 251-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20118936

RESUMO

Positioned nucleosomes limit the access of proteins to DNA and implement regulatory features encoded in eukaryotic genomes. Here we have generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome wide. Using this resource, we found surprising differences from the previously published nucleosome organization of the distantly related yeast Saccharomyces cerevisiae. DNA sequence guides nucleosome positioning differently: for example, poly(dA-dT) elements are not enriched in S. pombe nucleosome-depleted regions. Regular nucleosomal arrays emanate more asymmetrically-mainly codirectionally with transcription-from promoter nucleosome-depleted regions, but promoters harboring the histone variant H2A.Z also show regular arrays upstream of these regions. Regular nucleosome phasing in S. pombe has a very short repeat length of 154 base pairs and requires a remodeler, Mit1, that is conserved in humans but is not found in S. cerevisiae. Nucleosome positioning mechanisms are evidently not universal but evolutionarily plastic.


Assuntos
DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Genoma Fúngico , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Sítio de Iniciação de Transcrição
13.
Proc Natl Acad Sci U S A ; 106(52): 22257-62, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018700

RESUMO

Recent genome-wide nucleosome mappings along with bioinformatics studies have confirmed that the DNA sequence plays a more important role in the collective organization of nucleosomes in vivo than previously thought. Yet in living cells, this organization also results from the action of various external factors like DNA-binding proteins and chromatin remodelers. To decipher the code for intrinsic chromatin organization, there is thus a need for in vitro experiments to bridge the gap between computational models of nucleosome sequence preferences and in vivo nucleosome occupancy data. Here we combine atomic force microscopy in liquid and theoretical modeling to demonstrate that a major sequence signaling in vivo are high-energy barriers that locally inhibit nucleosome formation rather than favorable positioning motifs. We show that these genomic excluding-energy barriers condition the collective assembly of neighboring nucleosomes consistently with equilibrium statistical ordering principles. The analysis of two gene promoter regions in Saccharomyces cerevisiae and the human genome indicates that these genomic barriers direct the intrinsic nucleosome occupancy of regulatory sites, thereby contributing to gene expression regulation.


Assuntos
DNA/química , DNA/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Fenômenos Biofísicos , Cromossomos Fúngicos/química , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/ultraestrutura , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/ultraestrutura , Genômica , Microscopia de Força Atômica , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Termodinâmica
14.
Methods Mol Biol ; 521: 605-31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563131

RESUMO

The detailed understanding of the DNA replication process requires structural insight. The combination of psoralen crosslinking and electron microscopy has been extensively exploited to reveal the fine architecture of in vivo DNA replication intermediates. This approach proved instrumental to uncover the basic mechanisms of DNA duplication, as well as the perturbation of this process by genotoxic treatments. The replication structures need to the stabilized in vivo (by psoralen crosslinking) prior to extraction and enrichment procedures, finally leading to the visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize in vivo replication intermediates of genomic DNA, extracted from budding yeast or cultured mammalian cells.


Assuntos
Replicação do DNA , DNA/biossíntese , DNA/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Animais , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Reagentes de Ligações Cruzadas , DNA/química , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/ultraestrutura , Furocumarinas , Genoma Fúngico , Humanos , Microscopia Eletrônica de Transmissão/instrumentação , Desnaturação de Ácido Nucleico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Trioxsaleno
15.
Biochemistry ; 48(2): 276-88, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19099415

RESUMO

Recent studies of the mechanisms involved in the regulation of gene expression in eukaryotic organisms depict a highly complex process requiring a coordinated rearrangement of numerous molecules to mediate DNA accessibility. Silencing in Saccharomyces cerevisiae involves the Sir family of proteins. Sir3p, originally described as repressing key areas of the yeast genome through interactions with the tails of histones H3 and H4, appears to have additional roles in that process, including involvement with a DNA binding component. Our in vitro studies focused on the characterization of Sir3p-nucleic acid interactions and their biological functions in Sir3p-mediated silencing using binding assays, EM imaging, and theoretical modeling. Our results suggest that the initial Sir3p recruitment is partially DNA-driven, highly cooperative, and dependent on nucleosomal features other than histone tails. The initial step appears to be rapidly followed by the spreading of silencing using linker DNA as a track.


Assuntos
Cromatina/metabolismo , DNA Fúngico/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Algoritmos , Animais , Baculoviridae/genética , Pareamento de Bases , Sequência de Bases , Bioensaio , Cromatina/ultraestrutura , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/ultraestrutura , DNA Ribossômico/isolamento & purificação , DNA de Cadeia Simples/metabolismo , Inativação Gênica , Genoma Fúngico , Histonas/metabolismo , Lytechinus/química , Modelos Moleculares , Modelos Teóricos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/isolamento & purificação , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/ultraestrutura , Spodoptera/citologia , Moldes Genéticos
16.
Lab Chip ; 8(8): 1280-4, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18651069

RESUMO

We report a novel method for manipulation of single giant DNA molecules under a video microscope. Using optically driven microstructures, we manipulated chromosomal DNA of length in the order of millimetres, extended by electroosmotic flow without DNA breakage in aqueous solution: we picked up DNA, using microfabricated hooks and wound it around microfabricated bobbins.


Assuntos
Cromossomos/ultraestrutura , DNA Fúngico/ultraestrutura , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Schizosaccharomyces/ultraestrutura
17.
Chromosoma ; 117(3): 297-302, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18274769

RESUMO

We reported previously that Coprinus cinereus Lim15/Dmc1 (CcLim15), a meiosis-specific recA-like protein, could specifically activate C. cinereus DNA topoisomerase II (CcTopII). In particular, it enhanced the catenation activity of CcTopII in vitro at the meiotic prophase stage (Iwabata K, Koshiyama A, Yamaguchi T, Sugawara H, Hamada NF, Namekawa HS, Ishii S, Ishizaki T, Chiku H, Nara T, Sakaguchi K, Nucleic Acids Res, 33:5809-5818, 2005). In this study, the interaction between CcTopII and CcLim15, especially during catenation, was investigated in detail using atomic force microscopy. We demonstrated earlier that CcLim15 enhanced the catenation activity of CcTopII in a dose-dependent manner. When using two different-sized plasmid rings (5.4 and 3 kbp), which did not have any homologous sequence regions, equal proportions of homologous and heterologous catenanes were produced, suggesting that CcLim15 causes an increase in catenation activity irrespective of the presence of homologous sequences between the rings. We also showed that CcLim15 works as a DNA-condensing agent. Therefore, we speculate that CcLim15 may work as a DNA-condensing factor specific to the zygotene event and that CcTopII is likely to resolve tangles when the chromosomes initiate pairing at multiple sites by CcLim15.


Assuntos
Coprinus/enzimologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas Fúngicas/metabolismo , Homologia de Sequência de Aminoácidos , Catenanos , DNA Fúngico/ultraestrutura , Proteínas Fúngicas/farmacologia , Microscopia de Força Atômica
18.
Mol Cell Biol ; 28(6): 1924-35, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18195043

RESUMO

Gene regulation involves long-range communication between silencers, enhancers, and promoters. In Saccharomyces cerevisiae, silencers flank transcriptionally repressed genes to mediate regional silencing. Silencers recruit the Sir proteins, which then spread along chromatin to encompass the entire silenced domain. In this report we have employed a boundary trap assay, an enhancer activity assay, chromatin immunoprecipitations, and chromosome conformation capture analyses to demonstrate that the two HMR silencer elements are in close proximity and functionally communicate with one another in vivo. We further show that silencing is necessary for these long-range interactions, and we present models for Sir-mediated silencing based upon these results.


Assuntos
Cromossomos Fúngicos/genética , DNA Fúngico/genética , Elementos Facilitadores Genéticos/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica/fisiologia , Genes Fúngicos Tipo Acasalamento/genética , Região de Controle de Locus Gênico/genética , Modelos Genéticos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Imunoprecipitação da Cromatina , Cromossomos Fúngicos/ultraestrutura , DNA Fúngico/ultraestrutura , Proteínas de Saccharomyces cerevisiae/fisiologia , Complexo Shelterina , Proteínas de Ligação a Telômeros/fisiologia , Fatores de Transcrição/fisiologia
19.
J Biochem ; 141(1): 57-68, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17158862

RESUMO

To understand the regulation mechanism of fission yeast telomeric DNA, we analysed the structural properties of Gn: d(GnTTAC) (n=2-6) and 4Gn: d(GnTTAC)4 (n=3 and 4), and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). G4, G5 and G6 formed a parallel tetraplex in contrast with no tetraplex formation by G2 and G3. Also, 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The variety of tetraplex structures was governed by the number of consecutive guanines in a single copy and the number of repeats. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. The interaction with mutant Pot1DBD proteins revealed that the ability to unfold the antiparallel tetraplex was strongly correlated with the specific binding affinity for the single-stranded telomeric DNA. The result suggests that the decrease in the free single strand upon the complex formation with Pot1DBD may shift the equilibrium from the tetraplex to the single strand, which may cause the tetraplex unfolding. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.


Assuntos
DNA Fúngico/ultraestrutura , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , Dicroísmo Circular , DNA , DNA Fúngico/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Quadruplex G , Desnaturação de Ácido Nucleico , Schizosaccharomyces , Complexo Shelterina , Telômero/ultraestrutura
20.
BMC Cell Biol ; 7: 32, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16930478

RESUMO

BACKGROUND: DNA structure checkpoints are conserved eukaryotic signal transduction pathways that help preserve genomic integrity. Upon detecting checkpoint signals such as stalled replication forks or double-stranded DNA breaks, these pathways coordinate appropriate stress responses. Members of the PI-3 kinase related kinase (PIKK) family are essential elements of DNA structure checkpoints. In fission yeast, the Rad3 PIKK and its regulatory subunit Rad26 coordinate the detection of checkpoint signals with pathway outputs. RESULTS: We found that untreated rad26Delta cells were defective for two microtubule-dependent processes: chromosome segregation and morphogenesis. Interestingly, cytoplasmic accumulation of Rad26-GFP occurred following treatment with microtubule destabilizing drugs, but not during treatment with the genotoxic agent Phleomycin. Cytoplasmic accumulation of Rad26-GFP depended on Rad24, a 14-3-3 protein also required for DNA structure checkpoints and morphogenesis. Results of over expression and epistasis experiments confirm that Rad26 and Rad24 define a response to microtubule destabilizing conditions. CONCLUSION: Two DNA structure checkpoint proteins with roles in morphogenesis define a response to microtubule destabilizing conditions.


Assuntos
Benzimidazóis/farmacologia , Carbamatos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Genes cdc , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtúbulos/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Tiabendazol/farmacologia , Actinas/análise , Proteínas de Ciclo Celular/genética , Polaridade Celular/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Dano ao DNA , DNA Fúngico/ultraestrutura , Farmacorresistência Fúngica , Epistasia Genética , Evolução Molecular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microtúbulos/ultraestrutura , Morfogênese/genética , Morfogênese/fisiologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fleomicinas/farmacologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...